Critical role of Mst1 in vascular remodeling after injury.
نویسندگان
چکیده
OBJECTIVE Apoptosis of vascular smooth muscle cells (VSMCs) is observed in chronic vascular lesions such as atherosclerotic plaques and is believed to contribute to the vascular remodeling process. Mst1 is a ubiquitously expressed serine/threonine kinase known to be activated in response to a wide variety of nonphysiological apoptotic stimuli. However, little is known of the physiological function of Mst1, and its role in VSMCs has never been examined. METHODS AND RESULTS Treatment of VSMCs with staurosporine induced apoptosis and cleavage of Mst1, which is a marker of its activation, as well as activation of caspase 3. Adenovirus-mediated overexpression of wild-type Mst1 (AdMst1) in VSMCs increased apoptotic cells with activation of caspase 3. Mst1 was induced and activated in the balloon-injured rat carotid artery. Infection with AdMst1 in balloon-injured rat carotid artery suppressed neointimal formation compared with infection with AdLacZ. Infection with AdMst1 significantly increased the apoptotic cell number in the neointima compared with infection with AdLacZ without affecting BrdU incorporation. CONCLUSIONS Our results suggest that Mst1 plays an important role in the induction of apoptosis of VSMCs, mediating the vascular remodeling process, and may be a potential therapeutic target for vascular proliferative diseases.
منابع مشابه
Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction.
Mammalian sterile 20-like kinase-1 (Mst1) plays an important role in mediating cardiac myocyte apoptosis in response to ischemia/reperfusion. Whether or not Mst1 is also involved in the long-term development of heart failure after myocardial infarction (MI) is unknown. We addressed this issue using transgenic mice with cardiac specific overexpression of dominant negative Mst1 (Tg-DN-Mst1). The ...
متن کاملThe role of endothelin-1 in vascular remodeling in vivo.
Vascular smooth muscle cells (VSMCs) are a major component of the arterial wall and play a critical role in the development of occlusive vascular lesions. In normal vessels, VSMCs are quiescent, differentiated, and contractile and function to maintain vascular tone and blood pressure. In pathological processes such as the response to vascular injury, VSMCs undergo a phenotypic transition whereb...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملEffects of Uncultured Adipose Derived Stromal Vascular Fraction on Tendon Healing in Rabbits: A Histological and Immunohistochemical Study
Objective- To evaluate the potential effects of uncultured adipose derived stromal vascular fraction on tendon healing. Design- Prospective descriptive study. Animals- Twenty five adult male New Zealand white rabbits, weighing 2.5-3.0 kg were used. Five rabbits were used as donors of adipose tissue and the rest were divided into control and treatment groups. Procedures- The injury model was ...
متن کاملp21-activated kinase 1 participates in vascular remodeling in vitro and in vivo.
Vascular smooth muscle cell hypertrophy, proliferation, or migration occurs in hypertension, atherosclerosis, and restenosis after angioplasty, leading to pathophysiological vascular remodeling. Angiotensin II and platelet-derived growth factor are well-known participants of vascular remodeling and activate a myriad of downstream protein kinases, including p21-activated protein kinase (PAK1). P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2005